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We formulate statistical-mechanical inverse methods in order to determine optimized interparticle interac-
tions that spontaneously produce target many-particle configurations. Motivated by advances that give experi-
mentalists greater and greater control over colloidal interaction potentials, we propose and discuss two com-
putational algorithms that search for optimal potentials for self-assembly of a given target configuration. The
first optimizes the potential near the ground state and the second near the melting point. We begin by applying
these techniques to assembling open structures in two dimensions �square and honeycomb lattices� using only
circularly symmetric pair interaction potentials; we demonstrate that the algorithms do indeed cause self-
assembly of the target lattice. Our approach is distinguished from previous work in that we consider �i� lattice
sums, �ii� mechanical stability �phonon spectra�, and �iii� annealed Monte Carlo simulations. We also devise
circularly symmetric potentials that yield chainlike structures as well as systems of clusters.
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I. INTRODUCTION

“Self-assembly” of atomic, molecular, and supramolecu-
lar systems is a topic that has been receiving a great deal of
attention of late. Roughly speaking, it is the phenomenon of
system components arranging themselves via their mutual
interaction to form a larger functional unit. Examples are
plentiful; in biology, they include but are not limited to the
spontaneous formation of the DNA double helix from two
complementary oligonucleotide chains, the formation of lipid
bilayers as membranes, and spontaneous protein folding into
the native, functional state. On the other hand, self-assembly
can be employed in the synthesis of nanostructures as an
alternative to nanolithography. For example, Whitesides �1�
has demonstrated that complex two-dimensional structure
can emerge in organic molecules placed on an inorganic sur-
face. This is a natural system for studying self-assembly in
two dimensions. Jenekhe and Chen �2� showed self-assembly
of block copolymers into ordered arrays for possible use as
photonic band-gap materials. Block copolymers are indeed
natural candidates for use in photonic devices due to the
elaborate structures they can form and their multiple dielec-
tric constants. Stellacci et al. �3� have shown how gold nano-
wires can be assembled by functionalizing nanoparticles with
organic molecules. Manoharan et al. �4� have demonstrated
extremely robust self-assembly of unique, small clusters of
microspheres that can themselves be used for self-assembly
of more complex architectures.

This is an emerging field with a wealth of experimental
data that does not yet have a predictive theoretical basis.
Where there has been theoretical work, it has focused on
explaining the self-assembly in systems with given interpar-
ticle interactions �5,6� or of known macromolecular structure
�6�. These studies solve the “forward” problem of statistical

mechanics, i.e., they take the interaction as known and solve
for the structure and equilibrium properties of the system. In
this study, we take the inverse appraoch—given a desired
many-particle configuration of the system, we search for the
optimal interaction among component particles which spon-
taneously produces that target structure.

Our goal is to introduce an inverse statistical-mechanical
methodology for optimizing adjustable interactions for tar-
geted self-assembly. Motivation for this comes from the
plethora of recent examples wherein materials have been de-
signed to possess predetermined properties. Examples of
these include novel crystal structures for photonic band-gap
applications �7�, materials with negative or vanishing ther-
mal expansion coefficients �8,9�, materials with negative
Poisson ratios �10�, materials with optimal transport and me-
chanical properties �11�, mesoporous solids for applications
in catalysis, separations, sensors and electronics �12,13�, and
systems characterized by entropically driven inverse freezing
�14�. Our goal is to devise methods that can be applied to any
predetermined target structure, be they amorphous or even
quasicrystalline, thus extending the traditional meaning of
self-assembly beyond that of periodic structures.

We choose colloidal systems �15� as models for studying
self-assembly. Colloids are ideally suited for this purpose
because interparticle interactions are tunable. The colloid in-
terparticle potential V�r� can contain a hard-core term, a
charge dispersion �van der Waals� term, a dipole-dipole term
�isotropic in two dimensions �2D��, a screened-Coulombic
�Yukawa� term, and a short-ranged attractive depletion term.
All of these have adjustable amplitudes, and in the case of
the Yukawa term, the screening length can be adjusted by
changing the salt concentration in solution. Taken together,
these interactions form a large set of functional forms for the
interaction potential. Although we do not limit ourselves in
this study to these interactions, we bear in mind the limits of
complexity that these interactions will allow and we try not
to exceed these bounds in searching for our optimized poten-
tials.*Corresponding author. Email address: torquato@princeton.edu
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The adjustable colloidal interactions discussed in the pre-
vious paragraph are by nature isotropic. Thus, in this study,
we consider only potentials that have this property. Even for
this relatively simple class of potentials it is not at all clear
what are the limitations for self-assembly. For example, chi-
ral structures with specified handedness cannot be distin-
guished energetically from their mirror-image counterpart.
What other structures cannot be valid target structures? A
central question in colloidal and photonics research is re-
garding whether a diamond lattice �in three dimensions� can
be self-assembled, since such a lattice of dielectric spheres
has a large photonic band gap and would therefore be a vi-
able material for future photonic devices. It is not known
whether a diamond lattice can be assembled using isotropic
colloidal particles; indeed, the bonding in diamond itself is
highly directional.

There has been recent interest in self-assembly of aniso-
tropic particles. Examples of these are the so-called “patchy
particles” �16� and the unique colloidal clusters of Manoha-
ran et al. discussed above, which are anisotropic simply by
virtue of their nonspherical shapes. Although our algorithms
can be easily generalized to nonisotropic interactions, we
restrict ourselves to studying self-assembly with isotropic
potentials since this per se is a complex and subtle problem,
and a very nontrivial test bed for our optimization schemes.
Also, isotropic colloids are easy to produce by comparison
and their potential forms are manipulated relatively easily.

A general potential energy function for a system of clas-
sically interacting particles at positions �ri� in zero external
field can be written as

���r�� = �
i�j

V2�ri,r j� + �
i�j�k

V3�ri,r j,rk� + ¯ , �1�

where the V�’s are �-body potentials. Since we only consider
systems with isotropic interactions, we write

���r�� = �
i�j

V��ri − r j�� . �2�

Two necessary conditions that a pair potential correspond
to a targeted ground-state lattice are that �i� it is energetically
favored among a host of other lattices over a significant spe-
cific area � range �stable lattice sums� and �ii� possesses real
phonon frequencies at every wave vector in the Brillouin
zone �stable phonons�.

Past work on lattice self-assembly has not used both en-
ergy and mechanical stability criteria in tandem as we do
here; we consider this to be a main strength of our approach.
Still, these conditions are not universally sufficient for any
pair interaction and lattice structure. However, taken to-
gether, these necessary conditions constitute a prescription
for finding pair potentials that most robustly stabilize a given
target lattice. In the first optimization scheme �both are de-
scribed further on�, a pair potential is found that maximizes
the energy gap between the target lattices and its competi-
tors, while keeping all phonon frequencies real. The second
scheme assumes stable lattice sums and real phonon frequen-
cies, and uses molecular dynamics �MD� simulations to
maximize the stability of the lattice near its melting point.

For the purposes of this study, we will say that a lattice is
self-assembled if it is formed from a random configuration in
a well equilibrated, annealed Monte Carlo �MC� simulation
in an NVT ensemble, where N is the number of particles, V is
the volume of the system, and T is the absolute temperature.
It should be emphasized that the requirement that a given
lattice self-assemble in a MC simulation is a very strong one.
In conventional theoretical studies of colloidal crystallization
�17�, a number of candidate lattices is chosen and a phase
diagram is drawn by comparing free energies of the lattices
to each other and the liquid state over a range of thermody-
namic parameters. However, this procedure says nothing of
mechanical stability, or whether crystallization of the lattice
is preempted by that of another structure not considered.
These shortcomings are removed when self-assembly in an
MC, from a random initial configuration, is required. That
said, finite-size effects and limited CPU time in an MC simu-
lation might prevent self-assembly of a structure that should
form.

In the present paper we specialize to target structures that
are two dimensional. In particular we seek optimal potentials
for self-assembly of the square and honeycomb lattices, the
latter being the two-dimensional analog of the diamond lat-
tice �four maximally separated neighbors in 3D versus three
maximally separated neighbors in 2D�. This would be the
first demonstration of which we are aware of a lattice as
sparse as the honeycomb being self-assembled in an an-
nealed MC simulation. This work is an expansion on a pre-
vious introductory note by the present authors �18�. In this
paper, an optimization algorithm is introduced and applied.
In addition to the honeycomb lattice considered in the previ-
ous work, the triangular �as a control� and square lattices are
studied. We make the case for a more stringent requirement
for self-assembly and investigate the use of linear-ramp po-
tentials for this purpose. A more extensive discussion of the
problem of self-assembly in systems with isotropic interac-
tions is given in the conclusion section, including some MC
results for colloidal clusters and colloidal chains. In a future
paper, we will apply these inverse methods to three-
dimensional colloidal systems. While it is certainly true that
many-body behavior is fundamentally different in 3D, our
methods are easily generalizable to higher dimensions, and
we believe they will be as effective.

In the following section, we discuss past work on this
topic both for the sake of motivation and to show work upon
which we have attempted to improve. This is followed by a
section describing our optimization schemes. Next are sec-
tions on the triangular, square and honeycomb lattices, with
potentials for their self-assembly and details of their applica-
tions. We discuss the triangular lattice here as a control case,
and to give the details of our simulation procedure. The final
section is the discussion of our results and some conclusions
based on them.

II. PREVIOUS WORK

Weber and Stillinger �19� examined self-assembly of a
square lattice for a particular potential that included two- and
three-body interactions. They found that for their potential,
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the square lattice was indeed the ground state and demon-
strated that it self-assembled in a 2500 particle molecular
dynamics simulation. Our work is motivated by this, but is
different in two key ways. The first is that we restrict our-
selves to a much smaller class of potential functions, namely,
those that are two body only and isotropic. This should make
our potentials lend themselves better to realization in the lab.
The second is that we are searching systematically for func-
tional forms for V�r� that stabilize open structures, whereas
in Ref. �19�, the authors postulated a potential that seemed
that it should favor the square lattice and studied its proper-
ties. Weber and Stillinger took the direct approach, we take
the inverse approach.

The so-called “reverse” Monte Carlo method �20� of Ly-
ubartsev et al. was devised to find interparticle potentials that
produced given liquid state pair correlation functions. A simi-
lar method was developed by Muller-Plathe �21� using sim-
plex optimization. Although these are inverse techniques,
they are fundamentally different from our methods here for
two reasons. The first reason is that the pair correlation func-
tion contains limited information about an N-particle con-
figuration. Our method produces assembly of a given con-
figuration. The second reason is that these techniques
fundamentally deal with liquids and so do not apply to self-
assembly as it is commonly defined.

Jagla claims in Ref. �5� to have found an isotropic pair
potential form that stabilizes a number of structures �includ-
ing a “distorted” honeycomb lattice� called the “linear-ramp”
potential, which consists of a hard core at r=1 plus a linear
tail going to zero at a distance r1�1. A phase diagram is
drawn in that paper indicating the stability of the structures
he lists for different pressures and values of r1. However, he
never actually carried out a stability analysis and therefore it
is questionable whether the structures in his phase diagram
are truly ground states. Motivated by this issue, we deter-
mine whether the square lattice can be assembled over a
nontrivial specific area range for such a simple potential and
choose r1=1.45, which the phase diagram indicates should
yield the square lattice for certain pressure values. For this
value of r1 we find the range in specific area � for which the
square beats out the other three lattices �see Fig. 1�, and find
the phonon spectra �see Fig. 2� over that range. Phonon spec-
tra were calculated in the standard way by diagonalizing the
dynamical matrix for a very fine grid of k points in the Bril-
louin zone �a detailed explanation of this is given in Ref.
�22��. Any lattice at a given specific area/volume that has an
imaginary phonon frequency at any wave vector is necessar-
ily mechanically unstable. An NVT MC simulation of 625
particles annealed from kBT=1.5 to kBT=0.05 is shown at
�=1.38 in Fig. 3. Although there are pockets of square lat-
tice present, it is clear that the lattice has not assembled, and
there is no long range order. This can be seen from the plot
of the structure factor S�k�, given in Fig. 4. One of two
things has happened here. Either the system has become a
glass, or it has no freezing transition. This suggests that com-
paring the energies of a number of lattices �as was done in
Ref. �5�� cannot alone give certainty of the ground state.

III. THE OPTIMIZATION SCHEMES

A central feature of our approach to the inverse problem is
the design of computational algorithms that search for and

optimize a functional form for V�r� that leads to self-
assembly of a given target structure. The direct �noninverse�
version of this is the problem of the first order freezing tran-
sition, and has been studied analytically and numerically us-
ing, for example, classical density functional methods �23�.

Optimizing a pair potential V�r� for self-assembly means
choosing a family of functions V�r ; �a0¯an��, parametrized
by the ai’s, and then finding the values of the parameters that
lead to the most robust and defect-free self-assembly of the
target lattice, at a given specific volume � �or specific area in
2D�. We must be careful to choose the parameters such that
an overall rescaling of the potential is not possible, and we
keep each parameter within a prespecified range �ai

min,ai
max�.

The choice of parametrization and initial parameter values is
important: we make educated guesses based on the coordi-
nation numbers of lattices close in structure to the target

FIG. 1. �Color online� Lattice sums for the linear-ramp potential
with r1=1.45. Square wins out for values of the specific area �
between 1 and 1.4.

FIG. 2. �Color online� Phonon spectra for specific area �=1.0 to
�=1.4 for the square lattice in the linear ramp potential with r1

=1.45. Bands form as a result of the variation in �. Over this entire
range of �, all frequencies are imaginary, which indicates mechani-
cal instability in the lattice. Over this density range, the square
lattice is clearly not the ground state.
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lattice. Optimization can be carried out either at zero tem-
perature or near melting.

A. T=0 optimization scheme

Once the parametrization and initial parameters are cho-
sen, we perform a simulated annealing optimization to maxi-
mize the difference in lattice energy per particle � between
the target lattice and its closest energetic competitor among
the principle lattices in the system dimension �e.g., in 2D,
among triangular, square, honeycomb, and Kagomé lattices�.
This procedure is called the “zero-temperature” scheme be-
cause it seeks to minimize the difference in lattice potential
energies, rather than free energies; it is a search for stable
ground states. Formally, if ���� is the energy per particle at
specific volume �, we take as our objective function

�1 = max
j

� min
����min,�max�

�T��� − min
����min,�max�

� j���� . �3�

Here, T refers to the target lattice, j enumerates the com-
petitor lattices and ��min,�max� is a specific volume range,
within which the target � lies. The simulated annealing is
performed in ai parameter space, searching for a potential
that minimizes �1. This alone is not sufficient; we must also
guarantee the mechanical stability of the lattice. This is done
by making sure that at the target �, the given potential is
such that every phonon mode in the Brillouin zone is real. In
practice, this is done by constraining the lowest eigenvalue
of the dynamical matrix �frequency squared� to be positive,
and the lowest curvature eigenvalue of the softest acoustic
phonon mode to be greater than some positive cutoff value.
While this does not necessarily imply that all frequencies
will be real, it is usually sufficient, and in any case the fre-
quency of every mode can be calculated post facto.

In this scheme, we make the assumption that the greater
the difference in lattice energy per particle � �over a range of
�’s around the target �� of the target lattice and its principle
competitors, the greater will be the target’s tendency to as-
semble. While this is not by any means a rigorous statement,
it seems to make intuitive sense—the greater the energy dif-
ference, the less the tendency to get frustrated at the freezing
point between two lattices; the annealing should find the
deeper energy minimum.

It is possible that another structure will preempt the target
lattice �freeze at a higher temperature�, even if the optimiza-
tion proceeds perfectly. The MC will then get “stuck”; the
simulation will never go to its ground state because it is
caught in a strongly metastable state. Presumeably, however,
a colloidal system with the same interaction potential would
undergo a structural phase transition to the its ground state as
the temperature was lowered. Our MC simulations did in-
deed get stuck in slightly defected configurations very close
to the desired lattice. To check that these structures were not
inherently more stable than the target, we always confirmed
that the defects caused the system to have higher energy than
that of the lattice.

The main disadvantage of this optimization procedure is
that it is very specific to simple lattices, and is not naturally
generalized to more complicated structures. Indeed, the CPU
time required for the optimization grows as the cube of the
number of basis elements in the lattice, so optimizing for
complex structures quickly becomes intractable. Nonperiodic
structures �e.g., quasicrystals� are thus impossible for this
scheme.

This optimization scheme is competitor based; we favor
the target by energetically disfavoring other lattices. How-
ever, this does not preclude other structures, periodic or oth-
erwise from being lower in energy than the target. This is an
inherent limitation of this technique. The next scheme, how-
ever, does not suffer this shortcoming.

B. “Near melting” optimization scheme

In this procedure, we first make sure that the initial po-
tential satisfies our two stated necessary conditions for self-
assembly with the initial parameter values, namely, that the
target lattice is energetically favored over the others over a
wide � range, and that at our chosen �, all phonon modes are

FIG. 3. 625-particle MC results for the linear-ramp potential.
Annealed from kBT=1.1 to kBT=0.02 at �=1.38.

FIG. 4. �Color online� The structure factor S�k� for configura-
tion in Fig. 3, where kx and ky are the Cartesian components of the
wave vector k. This pattern in S�k� indicates that there is no long-
range order in this configuration.
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real. We then feed this family of functions to the algorithm,
and optimize it for self-assembly at a temperature near �but
below� the lattice’s melting point by suppressing nucleation
of the liquid phase in MD simulations.

We first find the melting temperature of the system by
running an NVE �canonical ensemble� molecular dynamics
simulation �MD� on a system of particles, in the target con-
figuration, at incrementally increasing temperatures �mean
square velocity�. We then run the MD repeatedly at 80–95 %
of the melting temperature �the temperature is chosen such
that phase-transition fluctuations do not render the calcula-
tions inconsistent�, each time calculating the Lindemann pa-
rameter, defined by

�2 =	 1

N
�

i

�ri − ri
�0��2 − 
 1

N
�

i

�ri − ri
�0���2

, �4�

where ri is the position of the ith particle after an appropriate
amount of simulation time, ri

�0� is its initial position, and N is
the number of particles. �2 is then taken as the objective
function for a simulated annealing calculation, and those pa-
rameters, ai, are found such that �2 is minimized. It should
be noted that in order to get a reproducible value of �2, it
must be averaged over a number of MD runs.

We choose to minimize the Lindemann parameter because
it gives some quantitative measure of the degree of liquid
nucleation or structural phase transition setting in near the
melting point. Presumeably, the more these effects are sup-
pressed, the more robustly the potential favors the given tar-
get structure. The algorithm will by its nature disfavor po-
tentials that violate either of our two necessary conditions for
self-assembly. It is inevitable that over the course of the op-
timization the melting temperature of the potential will be
changed; it could be that at that point, the system will no
longer be near the phase coexistence regime. This can be
detected easily enough �for example by comparing the Lin-
demann parameter to that which the harmonic approximation
predicts�, and then the optimization can be stopped and re-
started at a higher, appropriately chosen temperature.

An important limitation of this optimization is in the
tradeoff between its consistency and its closeness in tempera-
ture to the melting point. Due to large fluctuations near melt-
ing, getting reproducible values for �2 with sufficiently
small error requires larger and larger system sizes. So while
the optimization can be carried out well into the anharmonic
regime, the optimization cannot sample true phase coexist-
ence, only nucleation.

The inherent bias in this scheme towards the target lattice
presents a problem for optimization. The procedure does not
distinguish between a configuration being in a thermody-
namically stable state at the given temperature and being in a
supercooled metastable state. Just as in a MC simulation, the
MD may get “stuck.” As a result, the target may become
strongly metastable but never thermodynamically favored.
The only way to decrease this effect is to get closer in tem-
perature to the melting point, but this in turn requires more
and more CPU time.

In addition to the obvious advantage that this scheme in-
corporates finite-temperature, anharmonic effects, it has the

advantage of being competitor free. Whereas in the T=0
scheme, competitor lattices have to be chosen against which
the target lattice competes, this procedure ostensibly opti-
mizes against all competition. It should be noted that if an
initial potential with favorable lattice sums and stable
phonons for this procedure cannot be found by trial-and-
error, the zero-temperature scheme can be run first on a given
functional parametrization. This procedure would then take
that output as its input. This is perhaps the best way to com-
bine the two optimizations.

IV. THE TRIANGULAR LATTICE

A very well studied interparticle potential that robustly
stabilizes the triangular lattice is the Lennard-Jones �LJ�
�24�, given in a form rescaled from its traditional definition

V�r� =
1

r12 −
2

r6 .

We discuss this potential here as a control. We have em-
ployed it in a 500-particle MC simulation in the NVT en-
semble, annealing it down from kBT=1.5 to kBT=0.2 �allow-
ing sufficient equilibration time at each temperature step�,
with specific area given by the triangular lattice area when
the nearest neighbor is at unity, namely, 	3/2. Lattice sums,
shown in Fig. 5, demonstrate that energetically, the triangular
does beat the square, honeycomb, and Kagomé lattices over
a wide range of �’s �actually globally in this case�. Figure 6
shows that all phonon frequencies are indeed real. The two
branches of course represent the longitudal and transverse
acoustic modes of oscillation. Clearly the LJ potential meets
our two necessary conditions, that it be energetically favored
over the other lattices and that it have real phonon frequen-
cies. Figure 7 shows that it does indeed self-assemble into
the triangular lattice. The structure factor S�k� shown in Fig.
8 shows conclusively the existence of long-range order here.
For a different target lattice, we would have defined a family
of potentials of which the LJ was one, run the optimization

FIG. 5. �Color online� Lattice sums for the Lennard-Jones po-
tential. The triangular lattice is the most stable structure �at positive
pressure� for values of � from 0 through 	3/2.
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program, and then performed the MC self-assembly calcula-
tion. We do not run the optimization for the LJ here because
it is a relatively simple potential, and we wish to use it sim-
ply as a reference. Note that for all MC simulations in this
study we use an NVT ensemble with periodic boundary con-
ditions, adjusting the MC maximum step fraction such that
30% acceptance is maintained throughout the simulation �for
maximal ergodicity� �25�, and anneal through the freezing
transition towards T=0.

V. THE SQUARE LATTICE

Finding a stabilizing potential for the square lattice is in
some sense a more straightforward task than for the honey-

comb lattice since the neighbor distances are different from
those of the triangular. Quandt and Teter accidentally came
across a pair interaction that stabilized the square lattice
when examining quasiperiodic structures in 2D systems �26�.
Qualitatively very similar to the optimal V�r� that we derive
below, their square lattice potential satisfies our necessary
conditions, as expected. Their potential gives a very soft
phonon branch, causing the crystal to be very sensitive to
perturbations—the potential we derive below improves on
this. Here we use the square lattice as a simple illustration
and a test case of our methods. In finding an initial potential,
we choose to start with the LJ potential. Consider an � for
which the nearest neighbor distance is unity �for the square
lattice, this is itself unity, i.e., �=1�, then for the triangular
lattice, the next-nearest neighbor is at r=	3 and for the
square lattice it is at r=	2. Thus, we desire to find a potential
that is positive at r=	3 but negative at r=	2. Consider a LJ
potential with an added Gaussian centered at 	3 which has a
low enough width so that V�	2� is negative, and has a great
enough amplitude so that V�	3� is positive. This would do
the job of favoring the square lattice second neighbor while
excluding the triangular lattice one. Still, the amplitude and
width must be chosen such that our necessary stability con-
ditions are met. The trade-off here is clear: with an amplitude
too low, the square lattice will not be energetically favored,
and with an amplitude too high, the lattice will not be me-
chanically stable �the phonon frequencies will not be every-
where real�. We have found such a potential, namely,

VSQU�r� =
1

r12 −
2

r6 + 0.7 exp�− 25�r − 	3�2� . �5�

This potential is plotted in Fig. 9. The lattice sums for
VSQU�r� are given in Fig. 10 and its phonon spectrum is
shown in Fig. 11. Clearly the square lattice is energetically
favored and mechanically stable. The Maxwell double tan-
gent construction applied to the lattice sums gives a range of
stability in pressure �equal to −�� /�� at T=0� of 0 through
23.3, and in specific area of approximately 0.85 through 1.0.

We wish to optimize this initial guess potential and opti-
mize it, and so we parametrize it as follows:

FIG. 6. �Color online� Phonon spectrum �frequency squared� for
triangular lattice for the Lennard-Jones potential at �=	3/2. As
expected, the phonon frequencies are all real, which means that the
triangular lattice is mechanically stable for this value of �.

FIG. 7. 500-particle MC results for the LJ potential annealed
from kBT=1.5 to kBT=0.2 at �=	3/2.

FIG. 8. S�k� for the configuration shown in Fig. 7. The Bragg
spots shown here in S�k� clearly indicate the presence of long-range
order in the LJ-annealed configuration of Fig. 7, as expected.
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VSQU�r;a0,a1,a2� =
1

r12 −
2

r6 + a0 exp�− a1�r − a2�2� . �6�

Within the optimization program, we choose bounds for the
parameters, somewhat arbitrarily �such that the final poten-
tial still resembles the initial guess�. We ran the near-melting
and the zero-temperature optimization schemes. The near-
melting optimization produced the potential

VSQU�r� =
1

r12 −
2

r6 + 0.828 exp�− 26.5�r − 1.79�2� , �7�

and the zero-temperature optimization produced

VSQU�r� =
1

r12 −
2

r6 + 0.672 exp�− 42.242�r − 1.8248�2� .

�8�

The square lattice potentials are run in 484-particle MC
calculations, annealed to kBT=0 from kBT=1.0, at �=1.0.
We find that the potentials from both optimization schemes
cause square lattice self-assembly, as is evidenced in Fig. 12
�the MC results�, and in Fig. 13, the structure factor, which
shows the presence of long-range order. The results shown
are for the near-melting optimization, but we obtained essen-
tially the same results for the zero-temperature optimization.
Thus, we have “solved” the inverse problem for the case of
the square lattice, or at least we have found two working
solutions.

FIG. 9. A stable square-lattice potential VSQU, as specified by
Eq. �5�. This was the initial potential given to the optimization
schemes. The near-melting scheme produced the potential given in
Eq. �7�, and the zero-temperature scheme produced the potential
given in Eq. �8�.

FIG. 10. �Color online� Lattice sums for the optimized square-
lattice potential VSQU, as specified by Eq. �7�. The square lattice is
the most stable structure �at positive pressure� for values of � be-
tween 0.85 and 1.0.

FIG. 11. �Color online� Phonon spectrum �frequency squared� of
the square lattice for the optimized VSQU given in Eq. �7� at �
=1.0. This implies mechanical stability of the square lattice at this
value of �.

FIG. 12. 484-particle MC results for the near-melting optimized
square-lattice potential VSQU, as specified by Eq. �7�, annealed from
kBT=1.0 to kBT=0.0 at �=1.0.
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VI. THE HONEYCOMB LATTICE

We base our choice for the parametrization of the honey-
comb pair potential on the fact that the honeycomb is a sub-
lattice of the triangular, sharing the same neighbor distances.
The first and second coordination numbers are �3,6� and �6,6�
for the honeycomb and triangular lattices, respectively. We
therefore choose a potential that is positive at what we intend
to be the nearest-neighbor distance. For the sake of mechani-
cal stability �real phonon frequencies�, we put a potential
“well” at that distance, in the form of a 12-10 Lennard-Jones
potential. Including an exponential repulsive term, we first
parametrize the potential as follows:

VHON�r;a1,a2� =
5

r12 −
6

r10 + a1 exp�− a2r� .

Phonon frequencies could not all be made real using this
parametrization, and thus it was deemed to be insufficient.
As a result, we add to the parametrization an attractive
Gaussian of set depth and variance, meant to “brace” the
second neighbor:

VHON�r;a0,a1,a2,a3� =
5

r12 −
a0

r10 + a1 exp�− a2r�

− 0.4 exp�− 40�r − a3�2� . �9�

Note that here we are now allowing the coefficient of the
1/r10 term to vary in the optimization. After some encourag-
ing phonon spectra, lattice sums and annealing results with a
number of different parameter value inputs, we concluded
that this was a sufficiently �but not overly� complex func-
tional form on which to perform the optimization. The tar-
geted specific area is �=1.45.

The initial values for the parameters were chosen to be
a0=6.5, a1=18.5, a2=2.45, and a3=1.83. For comparison to
optimized results, a 500-particle annealed MC simulation
was run using these parameters, the result of which is shown
in Fig. 14. It clearly nowhere resembles a honeycomb lattice
configuration.

Both optimization schemes were carried out on this pa-
rametrization of the potential. Here, we show all results for
the near-melting scheme and simply state the results for the

zero-temperature scheme. The near-melting algorithm pro-
duced the following potential:

VHON�r� =
5

r12 −
5.89

r10 + 17.9 exp�− 2.49r� − 0.4 exp�− 40�r

− 1.823�2� . �10�

This function is plotted in Fig. 15. The lattice sums and
phonon spectrum are given in Figs. 16 and 17, respectively.
Notice that in the region of stability of the honeycomb lattice
the pressure would have to be positive in order to ensure
thermodynamic stability. The reader should note, however,
that in principle, it is always possible to append to a con-

FIG. 13. S�k� for configuration given in Fig. 12. The Bragg
spots shown here in S�k� clearly indicate the presence of long-range
order in the configuration shown in Fig. 12.

FIG. 14. 500-particle annealed MC results, for potential with
parameters displaced from initial guess at �=1.45. This potential
clearly yields a structure drastically different from the honeycomb
lattice.

FIG. 15. The near-melting optimized honeycomb-lattice poten-
tial VHON, as specified by Eq. �10�.
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structed pair interaction a weak long-ranged attractive com-
ponent �Kac-Uhlenbeck-Hemmer potential �27��; the corre-
sponding influence on the lattice sums is to subtract a
contribution proportional to the number density, thus lower-
ing the corresponding lattice sum toward a positive pressure
regime. As they are, the lattice sums give a range of stability
in pressure of 1.2 through 3.8, and in specific area of 1.42
through 1.48.

The 500-particle annealed MC simulation for this poten-
tial is shown in Fig. 18. The structure factor S�k� for this
configuration is shown in Fig. 19, and it indicates the pres-
ence of long-range order. Self-assembly has been achieved—
although there are clearly defects, these were simply “frozen
in” during annealing. Their presence costs energy, indicating
that the defective structure is not the true ground state, as
expected. The zero temperature scheme produced the poten-
tial

VHON�r� =
5

r12 −
6.50

r10 + 18.19 exp�− 2.21r� − 0.4 exp�− 40�r

− 1.755�2� . �11�

Similarly to the square lattice, the zero-temperature
scheme produced a honeycomb structure with long-range or-
der, albeit with more defects �11 vacancies and 2 interstitials,
compared to 3 vacancies and 0 interstitials for the function
given in Eq. �10��.

VII. CONCLUSIONS AND DISCUSSION

In sum, we have introduced and demonstrated two opti-
mization schemes for lattice self-assembly in two dimen-
sions, each producing optimized pair potentials for the
square and honeycomb lattices. The schemes are directly
generalizable to three dimensions and to more complicated
structures. Future work will do exactly this, testing whether
schemes that work well for single component systems in two
dimensions have wider applicability.

Although we have found potentials that have as their
ground states the honeycomb and square lattices at particular

FIG. 16. �Color online� Lattice sums for the optimized
honeycomb-lattice potential VHON, as specified in Eq. �10�. The
honeycomb lattice is the most stable structure for values of � be-
tween 1.45 and 1.48.

FIG. 17. �Color online� Phonon spectrum �frequency squared�
for the optimized honeycomb-lattice potential VHON, as specified by
Eq. �10�, at �=1.45. Clearly the honeycomb lattice is mechanically
stable.

FIG. 18. 500-particle MC results annealed from kBT=0.22 to
kBT=0.0 at �=1.45 for the potential in Fig. 15.

FIG. 19. S�k� for configuration given in Fig. 18. Bragg spots
shown here in S�k� clearly indicate the presence of long-range order
in the configuration shown in Fig. 18.
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�’s, these functional forms for V�r� are by no means unique.
In future work, we will try to optimize for “robustness” in
self-assembly. In particular, we would like to find potentials
that not only cause self-assembly of a system of particles
into a desired target structure, but that make the structure
minimally sensitive to perturbations in density, pressure, and
chemical potential, as well as to small changes in functional
form of V�r�. This is extremely important if these potentials
are to be implemented experimentally for two reasons. The
first is that there is of course some experimental error in
tuning the parameters in the potential, and these small uncer-
tainties should not prevent self-assembly. The second is that
we may wish to use experimental interactions to approximate
optimal solutions with different parametrizations, and there
will be some error associated with this fit. The potentials for
the square and honeycomb lattices found in this work can
indeed be called robust. For the square lattice potential, there
is a wide range of parameter values around our optimal so-
lutions that yield favorable lattice sums, real phonon fre-
quencies, and produce near defect-free self-assembly. The
important features of this potential are a strong initial repul-
sion �representing a near hard-core interaction�, an attractive
well at distance 	� as well as a positive maximum �we used
a gaussian� at or around 	3�. Not any functional form with
these features will necessarily work; but we have found that
perturbations around the potentials given above �relations �7�
and �8�� that preserve these features do indeed cause square
lattice self-assembly. The same can be said of the potentials
derived for the honeycomb lattice �relations �10� and �11��,
except of course with different features. These features are
the strong initial repulsion, the positivity of the first mini-
mum and the negativity of a second minimum, where the
minima are at distance ratio �	3. The chosen � puts the first
minimum at, or near, the honeycomb nearest neighbor.

It is a natural question to ask whether available colloidal
interactions can be made to fit our optimized V�r�’s. Al-
though obviously they cannot match these functions exactly,
they can indeed form a good approximation. For example,
our optimized honeycomb potential has a strong initial repul-
sion, followed by a short attraction, a steep repulsion and

then another attraction. By adjusting relative amplitudes, this
functional form can be approximated by a hard-core, a dis-
persion interaction, a repulsive dipole-dipole interaction, and
an attractive depletion. There is indeed hope for using real-
izable interactions to form open structures in 2D colloidal
systems.

Extensive attempts were made to find a potential that sta-
bilizes the Kagomé lattice but none were thoroughly success-
ful. A potential was found that satisfied the necessary condi-
tions, and the optimization was run. Although the MC run
gave a lattice with long-range order, the interstitials were
somewhat randomly placed. This is because there exists an-
other 2D lattice with four coordination �as the Kagomé has�
�28�, and it and the Kagomé are nearly indistinguishible in
energy for almost any LJ-based potential we used. Because
of this closeness in energy, the interstitial sites themselves
formed a weakly interacting lattice gas.

The problem of Kagomé lattice self-assembly goes be-
yond the competition with one other lattice, however. The
Kagomé has the property that it is in many ways an interme-
diate between the triangular and honeycomb lattices: its den-
sity is in between the two; the first three coordination num-
bers are �4,6,4� as opposed to �6,6,6� in the triangular and
�3,6,3� in the honeycomb lattice. So if the potential is sig-
nificant for only the first three neighbors �as ours have been�
then, rigorously, the Kagomé cannot energetically beat the
honeycomb and triangular lattices over all densities. Further-
more, there is an extremely delicate energetic balance be-
tween a stable Kagomé and a phase separation into the tri-
angular and honeycomb lattices. We believe that for these
reasons our optimizations have been unable to cause self-
assembly of the Kagomé.

The defects that were observed in the self-assembled tri-
angular and honeycomb lattice do not disturb the crystal
structure; this is to say that particles could be simply inserted

FIG. 20. Five-finger potential. Local minima are set at integer
values to prevent local triangular or square structure from emerging.

FIG. 21. 384-particle MC results for five-finger potential an-
nealed to kBT=0.1.
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at the defect points and a perfect lattice would emerge. There
are two possible reasons for the defects: first, that to have
some number of them is energetically favorable, and thus the
ground state configuration is not the perfect lattice; second,
that the slow dynamics of the MC simulation at low tempera-
tures prevent the defects from being removed in a realistic
amount of CPU time. A look at the energetics shows that the
second explanation is the right one. Over a small range of �
around the simulation density, the perfect lattice has lower
energy than that of the structure obtained in the simulation.
Perhaps simulations in the �VT ensemble �grand canonical�
would allow for more general phase space sampling and thus
demonstrate that the gaps are spontaneously filled.

If it is possible to stabilize structures that were once
thought to require directional bonding, what else can be sta-
bilized? Bilayers? Block copolymers? For the purpose of
seeing how far isotropic potentials can be taken, we exam-
ined what we call the “five-finger potential,” shown in Fig.
20. We chose this form for the potential since it would inhibit
second nearest neighbors of any lattice to form, only allow-
ing long chains of particles. Annealed MC results for this are
shown in Fig. 21. As shown, this potential allows for the
assembly of such parallel chains at �=6.0. This potential
cannot be built in the lab with current technology—it is far
too complex, but it shows that isotropic potentials have per-
haps more flexibility than one would immediately think. It is
also possible that a much simpler potential could allow for a
similar structure to assemble.

We have also devised a circularly symmetric potential
function that favors the assembly of small clusters of par-
ticles. The form of the potential was chosen to inhibit the
formation of clusters with second and third �and so on� near-
est neighbors—the most favorable structure thus being a sim-
plex, or equilateral-triangle cluster. The structures we find are
similar to those observed experimentally by Manoharan et al.
�4�. Although they do not find the functional form of the
potential explicitly, they conclude that the clusters that they
observe cannot be a result only of van der Waals attraction

and the hard core repulsion of the polystyrene colloid par-
ticles used in their experiment. This potential is shown in
Fig. 22, which we run at specific area �=9.6. MC results are
shown in Fig. 23.

One can imagine carrying on the process of qualitatively
searching for isotropic potentials for more and more complex
structures ad infinitum, with arbitrarily complex structures
requiring more and more elaborate functional forms. For ex-
ample, one might try to assemble a fullerene with a spheri-
cally symmetric pair potential by running an NVT annealing
simulation with 60 particles interacting via a potential that
has sharp minima at every interparticle distance for that mol-
ecule. There must be a limit, however: although it is conceiv-
able that a chiral structure would self-assemble, we cannot
choose its chirality if we employ only an isotropic potential
�left and right handed structures are equally likely�. A key
question that we ask, and that this study answers only in part,
is whether we can make qualitative statements about the
types of structures that can be assembled using only isotropic
pair interactions.

We are currently working on expanding this work to three
dimensional systems. Moreover, we are exploring the possi-
bility of tailoring for self-assembly thermodynamic quanti-
ties besides the area or volume, such as the pressure �in an
NPT ensemble simulation� and the chemical potential �in a
�VT ensemble simulation�. In future work, we plan to ex-
plore the self-assembly properties of multicomponent media
using our inverse/optimization approach.
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FIG. 22. Simplex potential. Attractive minimum followed by a
sharp hump has the effect of favoring near neighbors while prevent-
ing second and third neighbors. This gives rise to the simplex
clusters.

FIG. 23. 351-particle MC results for simplex potential annealed
to kBT=0.1.
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